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on A (r,t) which is zero above H,
sult in an expression for D, different from (3. 21),
It would be completely impossible to obtain any-

thing close to H,,. Near this field, the power ex-

pansion in A, (r,#) would diverge. This would make

impossible the derivations found in Sec. III,

To see how there is only one upper critical field
for the two bands, we need only look at (2.3). We
can interpret the energy gaps as resulting from

s+ This would re-

pair correlation of electrons in both bands at the
same time. Looking at the s-band energy gap, we
can see that even at fields where the correlation of
electrons in the s band is zero, the energy gap
Ay(r, t) would not necessarily vanish. The d-band
correlation would still exist. This is reminiscent
of the continuing existence of the energy gaps above
T.s seen by Hafstrom et al. in the tunneling experi-
ments on niobium.,
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Theory of an Isolated Vortex in a Pure Superconductor near 7= T.*
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It is demonstrated that the theory of Bardeen, Kiimmel, Jacobs, and Tewordt for an isolated
vortex in a pure type-II superconductor at arbitrary temperatures is in agreement with the
theory of Neumann and Tewordt near T= T, if nonanalytic terms of odd order in (1~ T/T)"? in
the free energy are assumed to vanish, The leading nonanalytic term is examined by the use
of perturbation theory to see if it vanishes, but no definite conclusion can be drawn. The ap-
proximations used in deriving these results should prove useful in the application of the method
of Bardeen et al. to other problems involving pure inhomogeneous superconductors.

I. INTRODUCTION

Bardeen et al.' (BKJT) have recently presented
a theory for the properties of an isolated vortex in
a pure type-II superconductor at arbitrary tem-
peratures, thus giving a partial solution to one of
the outstanding problems in type-II superconduc-
tivity.2 Among other results, H,, was obtained as

a function of k at 0 °K; an extension to higher tem-
peratures is in progress.® The isolated vortex
problem is also being treated by Eilenberger and
Biittner who have recently published a preliminary
report®; their theory is not limited to pure super-
conductors.

Prior to these efforts, the best theory for an
isolated vortex was that of Neumann and Tewordt®
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who obtained the first-order correction term to the
Ginzburg-Landau free energy® as derived by
Gor’kov.” This theory is limited to the tempera-
ture region above about 0. 97, but is valid for all
values of k and the mean free path.

Cleary® has recently demonstrated that the BKJT
theory is in agreement with the Ginzburg-Landau-
Gor’kov theory if a nonanalytic term of lower order
in (1 - T/T,) is assumed to vanish. Since his proof
does not test the correctness of a term in the BKJT
free energy, it is important to reexamine the BKJT
theory to see if it is in agreement with the Neumann-
Tewordt theory.

In Sec. II, we review and reformulate the BKJT
theory, and in Sec. III we obtain the leading terms
in the expansion of the free energy near T=T.,.

This expression is compared with the free-energy
expression of Neumann and Tewordt in Sec. IV, and
the two are shown to be identical if nonanalytic
terms of odd order in (1 - T/Tc)”z are assumed to
vanish. In Sec. V, we consider the leading non-
analytic term, but are unable to show that it van-
ishes.

The reformulation of the BKJT theory in Sec. II,
the high-energy expansion for the scattering states
in Sec. III, and the perturbation expansion in Sec.

V should be very useful in the application of the
BKJT theory to other problems involving pure in-
homogeneous superconductors.

II. REVIEW AND REFORMULATION OF BKJT THEORY

The expression of Bardeen et al.’® for the Gibbs
free energy of a pure superconductor containing a
single vortex line is, relative to the Meissner
state in the same applied field H,,

AG=AG,+ AG,+ AG,+ AG,, , 2.1)
where

AG,, = [d% (87) HA(T), (2.2)

AG,= - [i@%r(am) " H(T)H, = - H lic/4e, (2.3)

AG,= ﬂgz(o)N(o)Ai(o)énzf da sinda
0
2o 4, [cosh(384,)
><j; db (38A.) h{a}gﬁggm)) s (2.4)
and

AG.;=TEHON (0)22(0)3n f) dasina | db
Xj‘lth/Aech[E(A, b, a)

- C(b, a)(A% =1)" 2] tanh(LB8A.A). (2.5)

In these equations, H is the microscopic mag-
netic field; A.=A.(7T) is the BCS energy-gap
parameter in wholly superconducting material at
the temperature T; £(T)=fwz/mA.(T); N(0)
=mpp/ 272 is the one-spin density of states at the
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Fermi surface; a=arccos(k,/kp); b= uA./Epsin®a;
k, is the component of the wave number of the ex-
citations parallel to the vortex line; and u is re-
lated to the azimuthal quantum number of the ex-
citations by Eq. (4. 3) of Bardeen et al. t Equation
(2. 4) gives the contribution of the bound states to
the free-energy difference, the energy eigenvalue
E of the Bogoliubov equations being related to the
quantity A by E= AA,. AG,; as given by Eq. (2.5)
is the sum of two terms, the contribution from the
continuum states and the contribution from the in-
teraction energy; the quantity Z is the sum of the
phase shifts of the continuum states with respect
to the Meissner state, and

C(b, @)=limAZ(A, b, @) as A=, (2.6)

Bardeen et al. have transformed the two second-
order linear differential equations for #(¥) and v(¥)
(the Bogoliubov equations) by means of the WKBJ
approximation into two first-order nonlinear dif-
ferential equations for the complex quantities 7
and &,

%+6(x) cosn=A+F(x), (2.7)
%: i6(x) sinn , (2.8)

where 7 and ¢ are defined by Egs. (4.3), (4.9), and
(4. 15) of Bardeen et al. The quantities x, 6, F, and
A in Eqgs. (2.7) and (2. 8) are defined by

x=(2mb./7%,) (0> -p P, (2.9)
8(x)=alp, T)/A(, T) , (2.10)
F(x)=bg(x)/(b®+ 4?) , (2.11)

and

A=E/A(T) . (2.12)

The quantity p,= i/ k, is the turning point of the
WKBJ approximation and the quantity ¢(p) is re-
lated to the microscopic magnetic field H(p) by

H(p) = - (fic/2¢)p™" —-—dgl()"). (2.13)

For the bound states, 71 is real and £ is imagi-
nary; the bound-state eigenvalue A is that value of
A for which the boundary condition 1(x=0)=nm,
n=0,+1,£2,.,.,1is satisfied. Note that there can
be several branches to the bound-state spectrum
corresponding to the various values of n. In prac-
tice, it is found that there are no branches to the
spectrum for n>0. Also, the branches for n<0
appear only for small values of «; for the varia-
tional functions for 6(x) and ¢(x) used by Bardeen
et al., a second branch (that for »=-1) occurred
only in the case a=c=0. 25.

For the continuum states, both n and £ are com-
plex; n=n,-in, and £ =&, —if,. Because of the de-
generacy described by Bardeen et al., the bound-
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ary condition at x=0 is not an eigenvalue condition
like that for the bound states, but instead, a con-
dition on the value of £ at x=0. There are two in-
dependent solutions given by

sin[£1(0) + 37,(0)] = £e™2'? sin[£3(0) - 3n4(0)]
or (2.14)
tan£3(0) = - tan3n,(0)[tanh3n,(0)]™ .

In terms of gi(o), the total phase shift = is given
by Bardeen et al.! as

Z=0(b>0)+0(b<0), (2.15)
where
o=£7(0)+£7(0) + f(,n° dx[5(x) cosn, (x)
X sinhn,(x) — sinhny(e)] . (2.16)

We first note that Eq. (2.16) may be rewritten with
the help of Eq. (2.7) as

o =arctan{tann,(0)[tanhn,(0) - 1] /
[tanhn4(0) + tan®n,(0)]}

~ [, dxd8(x) cosny(x)e ™™ — e —F] . (2.17)

The second step in simplifying the result of Bar-
deen et al. is to transform to a new variable wde-
fined by

w=exp (~in). (2.18)

The differential equation for w is

.dw_ 2
2 dx__5(1+w Y+2(A+F)w .

The expression for ¢ simplifies to

2u(0)v(0) )

o=arctan (_ 1 =u%0)+%(0)

(2.19)

_fwdx[b(x)u(x) = w() - F]
0

=.-/o- ;x (é(x)u(x) —w(w)-F

darctan[- 2uv/(1 —u?+ 0?)] )
+
dx ’

where the real and imaginary parts of w are given
by

(2.20)

w=u—1iv (2.21)
and the value of w at x= is
w() = exp[ =ny(=)]= A = (A2 =1)'72, (2.22)

Equation (2.20) can be further simplified to

o=/0mdx [— bu+w(<)+F -2Im (’”(1 -9 %! )]

= —Imlog[l - w?(0)]+ f:dx[w(oo)+F -bu] .
(2.23)

Another form for o can be obtained by performing
the differentiation in Eq. (2.20) and using the real
and imaginary parts of Eq. (2.19) to remove the
derivatives; the result is

or=_£;° dx{w(<) =2A =F +2Re[(A +F = 6w)/(1 =u?]} .

(2. 24)
These results are preferable to the BKJT for-
mulation for both analytic and numerical work in-
volving the scattering states.
Bergk and Tewordt® have transformed Eq. (2.7)
by means of the substitution

Z(x) =tanzn(x) , (2. 25)
the differential equation for ¢(x) being
ac _ 2
de—(A+F—6)+(A+F+6)§ . (2. 26)

The transformation (2. 25) is preferable to both
the BKJT formulation and Eq. (2.18) for calcula-
tions involving the bound states. The variables
w and £ are related by

it=(1-w)/(1+w) . (2.27)

III. BKJT THEORY NEAR T'=T,

The results described in Sec. II are valid for
all temperatures less than T it is of great inter-
est to compare the BKJT theory near T'= T, with
the well-known results of Ginzburg and Landau, ®
as modified by Gor’kov.” Cleary® has recently
given an ingenious proof that the BKJT free en-
ergy is identical to the Ginzburg-Landau free en-
ergy to terms of order (1 -#)=(1-7/T,), if the
coefficient of a term of order (1 - #)*/2 in the BKJT
free energy vanishes., He first notes that the con-
tribution from the bound states (AG,) can be ex-
panded about A./2T=0 in a power series in which
only odd powers of A,/2T occur; since A, is pro-
portional to (1 — #)!/2 near t=1, AG, cannot con-
tribute terms of integral powers of (1 -¢). He
then solves Eq. (2.7) in powers of A" so that the
quantity

=(A, b, @) - C(b, a)/(A%=1)2
is obtained to the lowest nonvanishing order of A™;
on integrating this term over A, he finds a term
proportional to (1 —#). Finally, he shows that the
coefficient of this term is identical to the coef-
ficient of the corresponding term in the Ginzburg-
Landau free energy.

Since Cleary’s proof tests only the integral part
of the phase shift = as defined by Egs. (2.15) and
(2. 16) and not the £*(0) part, it is of interest to
calculate the term of next higher order in (1 —¢) in
the BKJT free energy and to compare it with the

corresponding term found by Neumann and Tewordt. 5

Following Cleary’s idea, we expand w in powers
of A,



3590 A. E.

w=(uy — iv)A™ + (g —Gva) A 240 e, (3.1)

On inserting this expansion into Eq. (2.19) and
equating the coefficients of A™, we find

uy =38, v,=0,
uz=—%F5, vp=-30",
Ug=—36""+5F% +56%, v3=2F'0+ Fd',
uy=—3F8 ~3F% + 3F"'6+ 5(F'6' + F6'"'),
vy=130""" =36%' —=3F(F'6+ Fo'),
us=30"""" —56[11(6")%+ 766""]+4586° + $F%° + 3F*

— 36(F")? = F(6F'6"+3F5" +2F"'6) .

(3.2)

The above relations suffice to determine the
5(x)u(x) term in the integrand of Eq. (2.20) to
terms of order A™. The expression for the arctan
part can be derived from the following expression
(correct to fifth order in A™):

arctan— 2uv/(1 = 12+ v%)] = uyvsA S + (w105 + usvp) A4
+ (Ug 04+ U3 + UgVs + UV A (3.3)

The terms in A*? and A™* are odd in F and cancel
on calculating ¥; the result is

T=— f:dx{A'l(Gz —1)+ A¥[1(6% =1) + F26%+ (6")?]
+AP[3(68")%+ 5(6°% = 1) 266" + §F%* - (6")?
+ F%2+ (6F")+8FF'55"+ 6(F5)%]}. (3.4)

The term in T of order A™ was found first by
Bergk and Tewordt, ® and shows that

C(b, a):fo” dx(1-8% . (3.5)
The term of order A= was, of course, found by
Cleary. ®

The next step is to integrate Eq. (3.4) over b
and to change variables from b and x to R and 6,
where x=R cosf and b= Rsinf. After performing
the integration over 6, we find

Jy abz=4n[ RAR{A™(1 - 5%
+307°[3(1 - 6%) = %% - (6")%]
+ 3051 - 6%) = 5(687)% = 36%% - L W(R)]

+3A7[3(6"")2+556'6""/R+36"6""" ~ 66""v?

- (v8")% —686"0%/R-2866"00']} , (3.6)

where the derivatives are now with respect to R
and v(R) = q(R)/R; the quantity W(R) is given by

W(R)=3(6""+6'/R - 50%)%-45""(6"/R - 60°)

+(26'v+ 60’ - 5v/R). (3.7
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By several integrations by parts, it can be shown
that the integral over the last square bracket in
Eq. (3.6) is identically zero. We next subtract
C(A2 =12 from = and integrate over a; on
changing the variable of integration from R to

p = 3mRE sina and performing the « integral, we
have

Jo sin’ada [ db[E(A, b, @) - C(b, @) (A2 =1)"]
= [ p do{ =76 AS[6172E (1 - 62)2+ 2(5")? + 26%7]
+ 7362607 AS[30774 "4 (— 6% + 36% - 2)

- 50726 2(55")% - 30772t 26%% — W(p)]},  (3.8)

where the derivatives now are with respect to p and
v=q(p)/p. The result (3.8) can now be substituted
into Eq. (2.5); the necessary integrals over A

are evaluated in the Appendix. The result for AG
up to second order in (1 —-¢) according to the BKJT
theory is

AGpgyr=AG,+AG,+AG,+ AG+ 1EX(0)N (0)a%(0)

x fowp dp

x{7¢(3)1271(A./2T)* 672 -3(1 - 82)?
+2(6%)2+ 26%%) + 31¢(5)120"¢%(a../2T)*
x [307 % (= 68 + 35% - 2) — 50772 "4(55")2

- 3077234 - W(p)1}, (3.9

where AG, represents terms of odd order in
(A./2T) resulting from the integration over A.

Since we want the second term inside the curly
bracket in Eq. (3.9) to only the lowest order, we
can use

(8./2T)%=4r*(1 - +)%/49£%(3) . (3.10)

A better approximation, given below, is necessary
for (A./27)%

Bergk and Tewordt® have also obtained a high-
energy expansion for the phase shift by starting
from Eq. (2.26) and making transformations of
the independent and dependent variables according
to the theory of the Riccati equation'®; a linear
second-order differential equation is obtained,
which is solved by a WKBJ method. This expan-
sion is clearly asymptotic and hence, the expan-
sion (3.1) must also be asymptotic. As we shall
prove in Sec. IV, the latter expansion gives the
Neumann-Tewordt expression for the free energy
of an isolated vortex and so expansions about
T=T,are asymptotic. To the author’s knowledge,
this was first pointed out by Helfand and Wer-
thamer, **
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IV. COMPARISON WITH NEUMANN-TEWORDT RESULT

The expression for the free energy difference AG for a pure superconductor is, % in ordinary units,

AGyr=AG,+ AG,+ fo “p do{LH(1 = 6%)%+ HAY[(6")%+ 6%0%]/2k3} + (1 - 1)[932(5)HoAY/4906%(3)ks3) fo” pdp

x{ = Bk20%(1 - 6%)2/6)*+ 5kE(1 = 6%)[(6")% + 8%0%]/A% = 10k2(55")%/32% = W(p)} ,

(4.1)

where X is the penetration depth, k;=2V2eH,® and W(p) is given by Eq. (3.7) with R replaced by p. In the
second integral, we need only the lowest-order terms in the expansion of H, and A/k; in powers of (1 —1)

and hence, we may set

H2=H¥0)8y%(1 - %/7¢(3) ,

and

A2/kG=n%2/6 .

(4.2)

(4.3)

The Neumann-Tewordt (NT) result can then be written as

AGyr=AG,+AG,+ [ “p do {3HA(L - 6%)2 + HAP[(6")+ 6%0%)/2k2} + m£2(0)N (0)a% (0)[7*£%(1 - 1)*31¢(5)/1470£%(3)]

X Jy 0 do{=30m"47462(1 = 692+ 30m % H{ (6 + 6%2] — 50n % *(66)" — 80m7% 26'o® — W(p)} .

(4.4)

On subtracting the NT result from the BKJT result, we have, to second order in (1 -#),

AGggyr - AGyr= AGy+ AGo+TEXO)N (0)A2(0) [ p dp {(1 - 632 5772 274(3)(8./27)* - $HY/TE*(OIN (0)A%(0)]

+[(0")%+ 6% [3£(3)(A./2T)2 - 3HEN;?/7£2(0) N (0)AZ(0)]}

- TE(O)N (0)A2(0)[317%¢(5) (1 - 11°/49¢%(3)] [ p dp [2772 (1 = 6%+ (6/)*+ 6%7] .

(4.5)

The remaining step is to expand the quantities HZ, HZ)%k;2 and (A./27T)? in powers of (1 —¢); the results are

(8./27)%=212(1 = {1 +(1 = )[ 1+ 93£(5)/98£%(3)]}/7¢(3),
[E(T)/£(0)P="¢(3){1+(1 - O[3 - 93£(5)/98£2(3)]}/8(1 - 1),
B2=7£2(0)N (0)a2(0)4(1 - )E2{1 + (1 - )] 3 - 31£(5)/98£%(3)]},
HEXZ /K% = n£2(0) N (0)A2 (0)272(1 - £)3 {1 + (1 = ) [ 3 - 93£(5)/98£%(3)]} .

On using Egs. (4.6), (4.8), and (4.9) in Eq.
(4.5), we find, to second order in (1 —¢),

AGpgyr = AGyr= AG,
+terms of odd order in (A./27).
(4.10)

The terms nominally of order (1 - ¢) and (1 —¢#)?
cancel; since AG, contains only terms of odd order
in A,./27T and since A,/2T contains only terms of
odd order in (1 - t)“z, we see that the three leading
terms in AGggyr — AGyq are of order (1 —1)'7,
(1-1°%?and (1-1°%2. It is, however, well known
from the work of Gor’kov” and Tewordt'? that AGyy
is exact up to and including terms of order (1 - #)?
and hence, the first two terms must vanish. A
term corresponding to the third term has been
found by Hu and Korenman'® as an extension to the
results of Saint-James and de Gennes'* and Ebneth
and Tewordt'® for H(T)/H,(T) near T=T,, and

so it is possible that the third term does not van-

(4.6)
(4.7)
(4. 8)
(4.9)

r
ish. It is, however, more likely that the free en-
ergy of an isolated vortex contains only analytic
terms since the nonanalytic term found by Hu and
Korenman is intimately associated with the pres-
ence of an external surface.'®

Since & and v in the expressions for AGgg ;y and
AGyq are temperature dependent, AGgpkyy and AGyr
contain terms of higher order than the second in
(1 —#); it is satisfying that these higher-order
terms also are identical in the two theories.

V. NONANALYTIC TERMS IN AG
The leading term in the expansion of AG is®
AGH = 7£2(0)N (0)A%L(0)[7A(T)/4T]
x [y dasin®a f," b {1n[1 - A2(p)]
+ [.AdA[Z (4, b, @) - C(b, a)(AZ -1) 2]},
(5.1)
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This term, which is of order (1 —#)!/%, must vanish
in order that the BKJT theory reproduce the Ginz-
burg-Landau free energy near T=T,. An exact
calculation of AG' appears to require an exact
calculation of the bound-state eigenvalue A and

the scattering-state phase shift = for all values of
the parameters, and so a complete analytic inves-
tigation of the vanishing of AG"’ seems to be im-
possible. It is, however, possible to find excellent
approximations for A and w for a range of b and «
values, and one might hope to show that the inte-
grand in Eq. (5.1) (i.e., the contents of the curly
bracket) vanishes for these values of b and a; as
we will see, this expectation is unfortunately not
fulfilled.

One case where good approximations can be
found is that region of (b, @) values where (1 —6(x))
and F(x) are small for all values of x; under these
conditions, one expects that an expansion in powers
of 1 -6(x) and F(x) should be possible. We will
first investigate the bound-state contribution to
the AG'? integrand and afterwards go on to the
scattering state contribution.

For the bound states, we begin with the differ-
ential equation (2. 26) for ¢{=tansn and expand ¢ as

§=§o+§1+§2+"' s (5.2)
where
Lo=[A -A)/(1+A)]2 (5.3)

¢, is of first order in f(x)=1 -6(x) and F(x), ¢, is
of second order, etc. On substituting Eq. (5.2)
into Eq. (2.26) and sorting the terms according to
their order, we obtain differential equations for

the ¢’s:

d =(A+1)goLy + {\ I; , (5.4)
d—fj:(m DeoLa+ s(A+ )i+ (F=f)Eekz - (5.5)
The solutions of these equations are
G(x)=~ [, dy (Afy+ Fy) (A+ 1)
x expl - (A+1)&o(x; - x)] , (5.6)

Ea(x) =~ Lw dxy [3(A+ 1) () + (Fr = f)Eoba ()]
xexp[ - (A+1)o(m = )] | (5.7)

We have used the notation f; =f(x;), Fy=F(x).

The bound-state eigenvalue A is obtained by
setting ¢£(x=0) equal to zero; for values of a which
are not too small, the other branches of the bound-
state spectrum do not appear. To second order,
we have

A+ 1)Eo=dy+ 5, (5.8)

where

Jy= [7 dx(Afy+ Fy) exp[ - (A+ 1)ox] (5.9)
and

Jp= f: da[3(A+1283(x) + (A+ 1) (Fy =f1)Eot1 ()]

xexp[ - (A+1)gpx] . (5.10)

On squaring Eq. (5.8) we obtain, to third order,
1-A%=J2+2J,J, . (5.11)
Since
(A+1)tqy= f: dx(f+ F) + second-order terms
and
A=1+second-order terms,

we may set A=1 and (A+1)¢,=0in Eq. (5.10) for
Jpand A=1in Eq. (5.9) for J;. The result for
1 - A% to third order in f and F, is

1- A—(f dx, g1) —Zf dx1f dxaf Ax3 %8182 83

+fo dxf dxlf dsz dx3 818283 » (5.12)

where
g(x)=f(x)+ F(x) ,
On simplifying the above result, we find
1-A%= [f dngi P -Zf dxlf dxsf Axp%2818283 5
(5.13)

correct to third order in f and F. The second-or-
order term in Eq. (5.13) had been found previously
by Cleary.®

For the scattering states, we expand w as

W=wo+ Wy +Wa+* ", (5.14)
where
wo= A = (A% =1)"2 (5.15)

wy is of first order in f and F, etc.; on inserting
Eq. (5.14) into Eq. (2.19), sorting terms, and
solving the resulting differential equations, we
find"’

wy ()= iw, [ doy(Afy+Fy) explilyy — u]  (5.16)

and
wa(x) = = Swd(x)/u —w, u'lfxwdxl _[cdxa (fi+AFy)

x (Afe+ Fp) expli(xs ~ x)u] . (5.17)
We have used the shorthand
u=(A2=1)12, (5.18)

Unfortunately, it is not possible to obtain a per-
turbation expansion for the quantity (A +F - 6w)/
(1 -w?) in Eq. (2.24) which is valid for all values
of A, and so it has not been possible to calculate
the scattering-state contribution to the integrand
of Eq. (5.1). If a perturbation expansion is pos-
sible after integrating over A, however, it is un-
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likely that odd powers of F will occur since the
phase shift for b <0 is added to that for b>0. As
we have seen, a perturbation expansion is possible
for the bound-state contribution, and this expansion
contains terms in odd powers of F. We conclude
that it is unlikely that AGY vanishes through the
vanishing of the integrand for arbitrary 6 and F.
This conclusion can also be drawn without the use
of perturbation theory; if one chooses & and F to
be constants for x<X and 6=1, F=0 for x> X, the
differential equations can be solved exactly and a
nonzero result for the oG integrand is obtained.

The condition that AG‘!’ vanish for arbitrary 6
and ¢ may, however, be unnecessarily stringent;
it is sufficient to require that AG‘"’ vanish only
for the exact functions 6 and ¢ (i.e., the functions
which minimize the free energy). Since the exact
6 and g are temperature dependent, AG™M as de-
fined above contains terms of higher order than
(1 =52 it is therefore sufficient to demand that
AG™ vanish for the lowest-order [in (1 - #)] exact
functions - the solutions of the Ginzburg-Landau
equations. One might therefore hope that the in-
tegrand of Eq. (5.1) can be rewritten in the form
of integrals over the Ginzburg-Landau equations,
but this appears to be impossible because the ar-
guments of the various functions are not the same.

No progress has been made in the investigation
of the next nonanalytic term in AG, AG®, and so
the vanishing of this term jn the BKJT theory is
an open question.

The results of the perturbation theory used in
this section are consistent with those obtained by
Bardeen et al. from converting the differential
equation (2.7) for n into an integral equation and
iterating the result. The BKJT procedure gives
more concise results but the expressions for ¢ and
w are not separated according to the powers of
(1 -3) and F.

APPENDIX: EVALUATION OF INTEGRALS OVER A

In the derivation of Eq. (3.9) from Eq. (3.8), it
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is necessary to evaluate the integrals
L= [ dA A tanh(AA./2T) (A1)
and
L= [ dn A®tanh(AA./2T) . (A2)

We have replaced the upper limits of the integrals
by infinity since the integrals converge and we are
interested in the weak coupling limit.

We first calculate I; which can be rewritten as

) b AA, AA
2 -3 L m—=
L= (AN/ZT)[ dA A -/0 dA A (tanh Ale 28 )

el AA. AA.»)
+[dAA (tanh 5T 3T

The first integral is trivial, the second may be
evaluated near T=T, (the exact condition is
1A./mT1< 1) by expanding the hyperbolic tangent
in a power series and integrating term by term,
and the third can be evaluated as a contour inte-
gral, the only singularities lying along the imagi-
nary axis., The result is

he3f -Slaner)  (-2)0

(A3)

76(3) A | As

- ar|er| - @Y
Similarly, the result for I, is
I_l&_l@‘_w)s 31£(5) (A.) ° |AL|
27327 “3\27) " 4f \2r) |oT
=\ 4(=1)m
E(Zn-—S)w
A, 2t 1
55)" (). (49)

It is remarkable that although I; and I, are odd
functions of A./2T, leading at first glance to the
conclusion that AG,; contains only odd powers of
(1=p" 2 there are terms involving even powers
of (1 -#)2, nevertheless.
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" These expressions, together with the expressions for
the higher-order terms which have not been written down,
can be used to derive the high-energy expansion of Sec.
III, Egs. (3.1) and (3.2); one merely uses the exponen-
tial terms in Eqs. (5.16), (5.17), etc., to perform re-
peated integrations by parts. This procedure usually re-
sults in asymptotic series, and thus one has further evi-
dence that the high-energy expansion is only asymptotic.



